
Integration of Visual and Inertial Information for
Egomotion: a Stochastic Approach

Justin Domke and Yiannis Aloimonos
Computer Vision Laboratory, Dept. of Computer Science
University of Maryland, College Park, MD 20742 USA

{domke,yiannis}@cs.umd.edu

Abstract— We present a probabilistic framework for visual
correspondence, inertial measurements and Egomotion. First, we
describe a simple method based on Gabor filters to produce
correspondence probability distributions. Next, we generate a noise
model for inertial measurements. Probability distributions over
the motions are then computed directly from the correspondence
distributions and the inertial measurements. We investigate
combining the inertial and visual information for a single
distribution over the motions. We find that with smaller amounts
of correspondence information, fusion of the visual data with
the inertial sensor results in much better Egomotion estimation.
This is essentially because inertial measurements decrease the
”translation-rotation” ambiguity. However, when more corre-
spondence information is used, this ambiguity is reduced to
such a degree that the inertial measurements provide negligible
improvement in accuracy. This suggests that inertial and visual
information are more closely integrated in a compositional sense.

I. INTRODUCTION

In this paper, we address the problem of Egomotion estima-
tion from visual and inertial measurements, a basic problem
and a prerequisite for any navigational competence. Given two
images, and two inertial measurements taken simultaneously,
we wish to estimate the Egomotion of the sensor rig between
the two frames. The standard way to use visual information
for this task is to establish correspondences between the two
images. As is well known, a few correspondences known
with perfect precision suffice to find the exact Egomotion.
In practice one cannot do this, for two reasons. First, the
problem of establishing correspondences between two images
is in general unsolvable- in the best case, there may be a
few exceptional points where this may be done. Secondly,
correspondences- even if they could somehow be manually
checked for correctness- are known only with a finite pre-
cision. If this finite precision is taken into account, a small
number correspondences yield a rather large group of possible
motions- essentially because it is difficult to disambiguate
image motion due to rotation and translation.

For inertial measurements, if the gravity vector were exactly
known in each frame, the degrees of freedom for the rotation
would be reduced from 3 to 1. If this reduction were perfect,
the translation-rotation ambiguity would be markedly reduced.
However, since inertial measurements are always corrupted by
noise, the true rotation will not be exactly compatible with
this constraint. Still it is natural to observe that if the inertial
sensor can give independent information about the rotation,

this can be used to combat the rotation-translation ambiguity
in vision-based Egomotion estimation.

We propose to treat both correspondence and inertial mea-
surements to be, in general, unmeasureable. Instead, given the
visual and inertial data, we establish probability distributions
over the correspondences and gravity vectors. We are then
able to directly calculate the probability of different motions,
with out committing to specific values for these underlying,
uncertain quantities. We will see that this strategy makes it
possible to extract a great deal of correspondence information
from the images- much more than approaches which limit
themselves to feature points. We then present experiments
that arrive at a somewhat counterintuitive result- though if
relatively small amounts of correspondence information are
used, inertial measurements allow for more accurate Ego-
motion, it is possible to extract so much correspondence
information from images that inertial measurements provide
virtually no increase in performance. We conclude with a
general discussion of what role inertial sensors might play
in robotics.

There are several novel aspects of this work. First, our
method of computing correspondence probability distributions
from the phase of tuned Gabor filters is new. A second
contribution is our method of calibrating the inertial sensor
for its noise profile, and then using this to interpret inertial
measurements probabilistically. Third is our method to com-
pute probabilities of different motions directly from proba-
bility distributions of correspondence. We point out that our
method is essentially a probabilistic phrasing of least-squares
epipolar minimization, generalized to the case of probability
distributions of correspondence. Fourth, we present the com-
bined visual/inertial probabilistic framework, and experiments
suggesting that if visual information is used optimally, inertial
sensors may not much help to improve Egomotion estimation.

A. Related Work

As Egomotion estimation is one of the oldest and most
widely researched areas of computer vision, the reader is
referred to a survey [9] or a recent textbook [12] for a
summary. The first category of more closely related papers
discuss correspondenceless visual Egomotion techniques. Sev-
eral algorithms have been proposed based on the computation
of the normal flow [10]. Though these algorithms will not
suffer from the aperture problem, they do not address problems



such as repetitive structure, and are therefore tangential to this
work. Wexler et al. [13] present a method which aggregates
information over multiple image pairs to learn the epipolar
geometry. Dellaert et al. [2] present an algorithm which
iteratively computes probabilities over both correspondence
and motion through the Expectation-Maximization framework.
The principal drawback of this algorithm is the possibility of
getting ’stuck’ in a poor solution. Unrelated to Egomotion,
Rosenberg and Werman [14] use probability distributions of
correspondence for object tracking.

The second category of relevant literature is regarding
the integration of visual and inertial sensors. There is the
Inervis workshop [8] dedicated to this. Lobo and Diaz [1]
explore the use of inertial data with visual sensors, including
thorough references to earlier work. Spanning both categories,
Makadia and Daniilidis present a technique for panoramic
imaging devices where inertial measurements are used to
reduce the unknown inertial parameters from 3 to 1, followed
by a correspondenceless Hough-transform search for the best
parameters in the remaining 3 dimensional motion space [7].

In our discussion of the accuracy of Egomotion estimates,
we will focus on the ’translation-rotation ambiguity’- the fact
that when estimating motion from a finite field of view camera,
translation and rotation are easily confounded. This has been
noticed repeatedly in practice, and addressed in theoretical
analyses [5] [4].

Supporting our approach’s philosophy, Thrun [3] argued
broadly for probabilistic perception in Robotics, since any
system must deal explicitly with the uncertainty in its mea-
surements to perform optimally.

II. CORRESPONDENCE

It has long been known that in general, correspondences
cannot be reliably established between two arbitrary images.
The aperture effect is the most widely discussed cause of
this. Simply stated, if correspondence is sought for a point
lying along a straight edge, information is only available to
constrain the point to lie along the corresponding edge in the
other image. This constraint is known as the normal flow, and
Egomotion algorithms exist that estimate motion directly from
it [10]. Also common in practice is the problem of repetitive
texture. Here, correspondence can be constrained to a group
of possibly disjoint points- lack of texture may be thought
of as an extreme case of this. These problems affect different
parts of the images to different degrees. Feature detectors may
be thought of as locating points that are relatively immune to
them.

Since weaker forms of correspondence such as normal flow
will give up information unnecessarily at points that do not
happen to show any ambiguity, they do make use of all
available image information. Similarly, restricting considera-
tion to feature points severely limits the number of possible
correspondences. As we will discuss later, large amounts of
correspondence information are vital for accurate Egomotion
estimation. We propose that by instead computing corre-
spondence probability distributions, all of these problems are
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Fig. 1. The computation of a correspondence distribution. (a) first image.
(b) second image, over which correspondence is being considered. (c)-(i)
distributions for specific, decreasing scales, each with all orientations. (d)-
(j) distribution considering all previous scales. (j) final distribution.

overcome. If a point is subject to some particular ambiguity,
the distribution can represent it. At the same time, if the
correspondence for a point is clear, the distribution need
not give up information unnecessarily. Distributions may be
computed for any point, representing all of the information
about correspondence to be found there.

Our method of computing correspondence distributions is
based on Gabor filters. Namely, we exploit the fact that for a
filter with a given orientation and scale, matching points will
have matching phase. We develop a probability distribution
for each orientation and scale, and combine these for the
final distribution. Suppose we are attempting to estimate the
probability that a pixel s matches most closely to a pixel q̂.



For the filter with orientation γ and scale l, denote the phase
by φl,γ . We take the probability that s and q̂ match to be
proportional to exp(−|φl,γ(s)−φl,γ(q̂)|2)+1. Combining the
information over all filters, then,

ρs(q̂) ∝
∏

l,γ

(exp(−|φl,γ(s) − φl,γ(q̂)|2) + 1).

Thus, points whose phase is very close will have much
higher probability. Since we are computing a probability over
a discrete set of points, it cannot be insisted that the phase
match exactly. Furthermore, to increase robustness to noise,
we add the constant of 1, limiting the influence of any single
filter. The computation of an example distribution is illustrated
in Fig. 1. Parts (c)-(j) show the probability that the point
marked in (a) corresponds to each possible location in (b).
Probabilities are encoded as color. It can be seen that the
large scale Gabor filters (i.e. (c)) provide different distributions
that the small scale filters (i.e. (i)). Nevertheless, it is shown
in the right column that the combination of all filters leads
to an excellent distribution. Now, since s will not generally
correspond exactly to a point with pixel coordinates, we use
the following expression as a kind of ’interpolation’ to reflect
the probability that s corresponds to an arbitrary point q.

ρs(q) ∝ max
q̂

ρs(q̂) exp(−||q̂ − q||2) + α

As we will discuss later for the case of known correspon-
dence, this Gaussian distribution is implicitly assumed when
minimizing over the least-squared epipolar distance. Thus this
expression may be thought of as a natural generalization to
the case of probability distributions over correspondence.

The constant of α is added to reflect the possibility that
the correspondences computed are not accurate. This would
be the case, for example, if the point corresponding to s
were occluded in the second image. Adding this constant
is equivalent to taking a certain probability that the image
information is unreliable, in which case a ’flat’ distribution is
appropriate.

In our implementation, we found it convenient to use a low
threshold ρmin where if ρs(q̂) < ρmin it is set to zero and
neglected from further consideration. When ρmin < α this
approximation has negligible impact on results, while resulting
in better performance.

III. INERTIAL MEASUREMENTS

In this paper, we will consider rotations parameterized by
a length 3 vector ω. We will speak of a rotation matrix
R(ω). By this we mean the matrix which rotates all points
by an angle |ω| about the unit vector ω/|ω|. Now, suppose
the gravity vector is measured perfectly in two frames, with
measurements g1, and g2. Since gravity is unchanging, this
presents a constraint on the motion, g2 = R(ω)g1. Note
that this constrains only two of the three rotational degrees
of freedom, since if g2 = R(ω)g1, then g2 = R(cg2)g2 =
R(cg2)R(ω)g1 for any scalar c. If the vectors g1 and g2 are
normalized to have length one, we may write this constraint
as (R(ω)g1) · g2 = 1.
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Fig. 2. Inertial Error Model

For any real sensor, however, the measurements will in-
evitably be corrupted by noise. If the equation above is used
as a ’hard’ constraint, it may very well result in a worse
Egomotion estimate. To make robust and optimal use of
the inertial data, we must have a realistic noise model. To
attain an estimate for the error in our inertial sensor, we
recorded 10,000 consecutive measurements while the sensor
was stationary. Measurements were normalized so that all
measurements had length 1. We then calculated g1 · g2 for
each consecutive measurement pair. These measurements are
plotted in a histogram with bin size .000005 along with a
fitting line in Fig. 2. There, circles indicate the histogram
values; the solid line indicates the fit. The fitting line is
p(g1 · g2) = 2402(g1 · g2)4.374e4. This suggests that given
a measurement g1 for gravity in one frame, and g2 in another,
we can estimate the probability that ω is the rotation between
the frames by ρ(ω) ∝ (R(ω)g1 ·g2)µ, where µ = 4.374e4. We
should note that this is a noise model for our specific inertial
sensor, a 3DM-GX1, manufactured by MicroStrain, Inc. Since
different sensors are sure to have different noise properties,
individual calibration is unavoidable.

IV. SENSOR RIG CALIBRATION

As pictured in Fig. 3 on our sensor rig consists of a camera,
rigidly attached to an inertial sensor. Though an approximate
answer could be found from physical measurements, we take
the coordinate systems defined by the two sensors to be
subject to an arbitrary rigid transformation. Since the direction
of gravity will be unaffected by the translation, we can
neglect it completely, and focus only on finding a rotational
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Fig. 3. The coordinate systems for the camera and inertial sensor differ by
an arbitrary rigid transformation.



matrix C(ωc) which can transform gravity vectors in the
inertial frame to the camera frame. With this done, we can
use the inertial measurements to find the Egomotion in the
camera’s frame. We captured an outdoor sequence consisting
of approximately 50 frames, each frame consisting of both
visual and inertial data. In this sequence we attempted to
keep the translational motion of the camera to a minimum.
As all objects in the scene were very distant relative to the
translation, essentially all image motion was due to the camera
rotation. We then found rotation matrices Ri for all frame pairs
from the visual data. For simplicity, this may be thought of
as being done manually. The calibration matrix C can then
be found by searching for rotational parameters wc such that
∀i ∈ 1, ..., N − 1, C(ωc)gi+1 ≈ RiC(ωc)gi. Specifically, we
used a gradient descent method to search for ωc minimizing:

N−1∑

i=1

||C(ωc)gi+1 − RiC(ωc)gi||2

V. EGOMOTION

A. Egomotion from Vision

Given a correspondence probability distribution for a single
point s, we take the probability of a given motion to be pro-
portional to the maximum probability correspondence which
exactly satisfies the epipolar constraint:

ρV
s (t, ω) ∝ max

q:qEs=0
ρs(q)

Here, E = [t]×R(ω) is the Essential Matrix corresponding
to the motion (t, ω) [12]. One can substitute our earlier
formula for ρs(q) to obtain:

ρV
s (t, ω) ∝ max

q:qEs=0
max

q̂
exp(−||q − q̂||2) + α

Now, observe that this is in fact equal to:

ρV
s (t, ω) ∝ max

q̂
exp(−||q̂T l(E,s)||2) + α

Where l(E,s) is the line Es normalized so that for any point
r, the distance from the line to the point s on the image plane
is simply rT l(E,s):

l(E,s) =
Es√

(E1s)2 + (E2s)2

Combining the information over all points into ρV (t, ω) ∝∏
s ρV

s (t, ω) then yields the final probability in form in which
it is calculated:

ρV (t, ω) ∝
∏

s

(max
q̂

ρs(q̂) exp(−(q̂T l(E,s))2) + α)

It may be argued that the approach we have outlined here
is heuristic. For example, why is the Gaussian distribution
used for points with out pixel coordinates? Indeed, there are
numerous ways to develop probability distributions of motion
from images. However, our approach may be considered as
a reasonable generalization of previous work on the grounds
that, with known correspondences, maximizing our function

is exactly equivalent to minimizing the least-squared epipolar
distance, as we will now show. Suppose that we have known
matches- each point si is known to correspond to the pixel q̂i.
In this case, we would have ρsi

(·) = 1 for q̂i and 0 for all
other points. Furthermore, since the matches are known to be
correct, α should be set to 0. Therefore,

arg max
t,ω

ρV (t, ω) = arg max
t,ω

∏

i

(ρsi
(q̂i) exp(−(q̂T

i l(E,s))2))

= arg max
t,ω

∏

i

exp(−(q̂T
i l(E,s))2))

Since the motion which maximizes the right side will also
maximize its logarithm, we obtain the exact expression for the
least-squares epipolar distance:

= arg min
t,ω

∑

i

(q̂T
i l(E,s))2

B. Egomotion from Inertial Sensors

The probability distribution over the motions is given di-
rectly by the noise model described in section III:

ρI(t, ω) ∝ (R(ω)g1 · g2)µ

C. Sensor Fusion

The final probability for a given motion is given by the
assumption that the information given by vision and inertial
sensors is independent. We can simply combine the probability
distributions to obtain our full probability distribution over the
space of motions:

ρ(t, ω) ∝ ρV (t, ω)ρI(t, ω)

D. Optimization

Given a single motion, (t, ω), its probability can be very
quickly computed. Still, because there are 5 degrees of
freedom, computing a full motion probability distribution
is problematic- computational considerations demand such a
coarse sampling of each dimension that the entire ’peak’ of
the distribution may be missed. In our experiments, we will
maximize the motion function through a simple heuristic opti-
mization. First, random sampling (t on the sphere with |t| = 1,
ω such that |ω| ≤ .1) is used at approximately 2500 points.
Next, the Nelder-Mead simplex search method is used at the
25 highest scoring samples. The final maximum probability
sample found is taken as the result. In practice, we found
that several of the 25 searches resulted in very close answers,
suggesting that missing the global maximum altogether is
unlikely. This is consistent with results reported elsewhere for
Egomotion techniques using nonlinear functions [4] [11] sug-
gesting there will be several (but only several) local minima.
Although this is in a sense a ’brute-force’ maximization, in
practice the slowest part of our technique is the computation
of the correspondence distributions. In our implementation, the
function is maximized in a few seconds when using a small
amount of correspondence information, and in the order of a



minute even when using a very large amount of information.
During the search, t is parameterized by the azimuthal and
polar angles on the sphere. It is possible that a practical real-
time system could be constructed to maximize the function
in real time, by computing the correspondence and motion
distributions in parallel using specialized hardware.

VI. EXPERIMENTS

A. Synthetic Measurements

As a first experiment, we generated two synthetic images
with known egomotion. Next, we generated 10,000 gravity
vectors, under the assumption that that gravity was along the
z axis. These gravity vectors were polluted with noise so
that they produced the same distribution as shown in Fig. 2.
We admit that synthetic images and inertial measurements are
somewhat unsatisfying, but this is the most practical way to
generate a sequence with the exact known motion. Then, to
provide a comparison for our approach, we manually extracted
50 pixel-accurate correspondences between the two images.
Since there are a large number of methods which attempt
to automatically establish feature correspondences, we select
them by hand to present an upper-bound on their performance.
In Fig. 4 we compare the performance of 4 techniques: First,
the algorithm run on the hand matches- equivalent to least-
squares epipolar minimization. Second, we show the algorithm
using both hand matches, and inertial measurements. Third
is the algorithm using only the correspondence probability
distributions, while fourth is the correspondence distributions
with inertial information. For each point shown, means were
taken over 100 trials. Translational error is computed as∑100

i=1 ||ti − t0||/100, and rotational error as
∑100

i=1 ||ωi −
ω0||/100, where (t0, ω0) is the ground truth motion. Each
trial took a random subset of the appropriate correspondences,
and random inertial measurements. In Fig. 5 and Fig. 6 the
resulting solutions are shown ’projected’ down into the two
dimensions, tx, and ωy . A somewhat counterintuitive result is
seen here. With small amounts of correspondence information,
the inertial measurements greatly increase the accuracy of
Egomotion estimation. However, when the very large amounts
of correspondence information made available by computing
probability distributions are used, the inertial sensor provides
less and less a boost to performance, finally resulting in no
apparent increase at all.

To aid in understanding what is happening here, in Fig.
7 we show probability distributions obtained with different
amounts of correspondence information. With small amounts
of correspondence info, a clear ’ridge’ is seen, where a change
of rotation is compensated with a change of rotation to yield
a motion similarly consistent with the epipolar constraint. In
this case, observe that the inertial information both reduces
the ’ridge’ and moves the peak closer to the correct answer.
However if huge amounts of correspondence information are
used, the ’ridge’ is so small, that it entirely lies within the
range of uncertainty for the inertial measurements. Here, the
inertial sensor does almost nothing to increase the accuracy.
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Fig. 4. Total errors for different numbers of correspondences or correspon-
dence distributions.
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Fig. 5. Projected solutions for synthetic images, using hand matches.
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Fig. 7. ’Slices’ of the motion probability distribution. Top Row: 10 hand-matches. Bottom Row: 5000 correspondence distributions. Left Column: distribution
from vision alone. Center Column: distribution from inertial information alone. Right Column: combined distribution.
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Fig. 6. Projected solutions for synthetic images, using the probabilistic
algorithm.

B. Real Measurements

Results with real measurements from our sensor rig are
shown in Fig. 8. Here, ground truth is not available, but as
can be seen in Fig. 9 the projections found from different
subsets of correspondences converge to a small area as the
number of correspondences is increased. Again, we can see
that when 4096 correspondence distributions are used, the
inertial measurements only very slightly change the resulting
Egomotion estimates.

VII. DISCUSSION

In this paper, we have presented a probabilistic framework
for the interpretation of visual and inertial measurements
in the estimation of Egomotion. We have shown that by
computing probability distributions of correspondence, very
large amounts of correspondence information can be extracted
from the images, leading to much more accurate Egomotion
estimation. Though inertial sensors dramatically increase the
accuracy of Egomotion estimates for small amounts of corre-
spondence information, the inertial sensors provide virtually
no benefit for the largest amounts. What are we to make of
these results? We do not believe that they should be taken
to suggest that inertial sensors are useless for Egomotion. On
the contrary, given the ubiquity of inertial sensors in biological
systems, we view this as merely suggesting more specific uses.

First, inertial sensors could provide computational advan-
tages. Our technique essentially uses the visual and inertial
sensors to independently estimate Egomotion estimation, com-
bining information afterwards. Instead, they could be more
tightly coupled- the inertial measurements guide the visual
Egomotion process. If the framework described here were to
be implemented in a practical real-time system, the portions



Fig. 8. Results for the probabilistic algorithm with two frames from the real
sequence. Solid lines: Epipolar lines for visual information only. Dotted lines:
Epipolar lines for Visual and Inertial information.

of the motion parameter space can be greatly ’pruned’ by the
inertial sensors, even if this does not result in a final change
in accuracy. For example, if hardware were built to sample
the motion space in parallel, the inertial measurements could
be used to parameterize the portions of the space that were
considered. Thus, the inertial sensors could enable use of a
relatively small number of samples to represent the entire
relevant motion space.

Second, inertial measurements could provide less direct
information about motion. If there is independent motion in the
scene, the inertial measurements could reject as incompatible
any motions inconsistent with the gravity constraint. In this
way, visual Egomotion would be possible even when most of
the scene is taken up by independent motion. Furthermore, we
should note that the way inertial measurements were used in
this paper may not always be realistic. Inertial measurements
do not capture gravity alone, but gravity along with the accel-
eration of the sensor. We might therefore use inertial sensors
in the opposite of the way proposed here. Rather than using
inertial sensors to find rotational information, the rotation
could be found from vision, allowing the inertial sensors to
compensate for gravity and find the translational acceleration.
Future work should further investigate this tighter coupling of
the use of different measurements.

−0.8 −0.6 −0.4 −0.2 0 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
64 correspondence distributions

y

ω
x

−0.8 −0.6 −0.4 −0.2 0 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
64 correspondence distributions + inertial

y

ω
x

−0.8 −0.6 −0.4 −0.2 0 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
512 correspondence distributions

y

ω
x

−0.8 −0.6 −0.4 −0.2 0 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
512 correspondence distributions + inertial

y

ω
x

−0.8 −0.6 −0.4 −0.2 0 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
4096 correspondence distributions

y

ω
x

−0.8 −0.6 −0.4 −0.2 0 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
4096 correspondence distributions + inertial

y

ω
x

Fig. 9. Projected solutions for real images, using the probabilistic algorithm.
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